1.4. Силы в механике


Закон всемирного тяготения
. Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния r между ними:
  
где G = 6,67·10–11 м3/кг·с2 (СИ) – гравитационная постоянная.

Закон всемирного тяготения справедлив для точечных, а также сферически симметричных тел. Приближенно он выполняется для любых тел, если расстояние между ними значительно больше их размеров.

Рисунок 1.4.1.
Закон всемирного тяготения.

Одним из проявлений закона всемирного тяготения является сила тяжести. На поверхности Земли поэтому сила всемирного тяготения, действующая на тело массой m, равна
  
где ускорение свободного падения  Здесь масса Земли равна а ее радиус Вблизи поверхности Земли ускорение свободного падения равно приблизительно g = 9,8 м/с2.

Сила F называется силой тяжести и направлена к центру Земли.

Рисунок 1.4.2.
Сила тяжести на различных расстояниях от Земли. При удалении от поверхности Земли сила земного тяготения и ускорение свободного падения изменяются обратно пропорционально квадрату расстояния r до центра Земли. Масса тела принята равной m = 70 кг.

В современной физике считается, что гравитационное притяжение обусловлено наличием гравитационного поля, посредством которого тела действуют друг на друга.

Сила, с которой тело действует на неподвижную горизонтальную опору или подвес, называется весом тела  По третьему закону Ньютона, с той же по модулю силой опора или подвес действуют на тело; эта сила называется реакцией опоры  Понятие веса может быть распространено и на случай, когда опора или подвес движутся с ускорением относительно инерциальных систем.

Если опора или подвес двигается с некоторым ускорением, то сила давления со стороны тела (то есть вес тела) изменяется.

В частности, если опора движется с ускорением направленным против силы тяжести, то вес тела обращается в нуль. Такое состояние называют невесомостью. Состояние невесомости испытывает космонавт в космическом корабле.

Рисунок 1.4.3.
Вес тела и реакция опоры.

Изменение формы или размеров тела называется деформацией. Деформации бывают упругими и пластичными. При упругих деформациях тело восстанавливает свою форму и размеры после прекращения действия силы, при пластичных – нет. При упругих деформациях справедлив закон Гука: деформация пропорциональна вызывающей ее силе.
 Fвнеш = –Fупр = kx. 
Коэффициент k называется жесткостью. Знак минус показывает, что упругая сила всегда направлена в сторону, противоположную деформации.

Рисунок 1.4.4.
Сила упругости.

При больших силах деформация становится пластической, график зависимости силы упругости от удлинения становится нелинейным, и закон Гука перестает действовать.

Рисунок 1.4.5.
Зависимость модуля силы упругости от удлинения.

Силы, действующие между поверхностями соприкасающихся твердых тел, называются силами сухого трения. Они всегда направлены по касательной к соприкасающимся поверхностям и подразделяются на силы трения покоя, скольжения и качения.

Рисунок 1.4.6.
Сила трения покоя.

Сила трения покоя – величина непостоянная, она может изменятся от нуля до некоторого максимального значения Fтр max. Сила трения покоя равна по модулю и противоположна по направлению проекции внешней силы, направленной параллельно поверхности соприкосновения неподвижных относительно друг друга тел.

Если проекция внешней силы больше Fтр max, то возникает движение. Силу трения в этом случае называют силой трения скольжения. Экспериментально доказано, что сила трения скольжения пропорциональна силе реакции опоры:
 Fтр max = μN. 
Коэффициент трения μ зависит от материалов, из которых изготовлены соприкасающиеся тела, и не зависит от размеров соприкасающихся поверхностей.

Сила трения скольжения всегда направлена против относительного движения тела.

Сила трения качения возникает, если тело катится по поверхности. Она значительно меньше силы трения скольжения для тела соответствующей массы. При решении многих физических задач силой трения качения можно пренебречь.

При движении в жидкости или газе возникает сила вязкого трения. При вязком трении нет трения покоя. Сила вязкого трения направлена в сторону, противоположную скорости тела. Зависимость от модуля скорости может быть линейной F = –βv или квадратичной F = –αv2.





Использованы материалы сайта www.physics.ru